Workshop on Using bace for Teaching"

Let's think in terms of making a top

Self introduction

I am from Kagoshima in Japan.

Self introduction

Kagoshima is a very attractive

place.

One of them is Sakurajima.

Sakurajima

Sakurajima is a mountain that symbolizes the Kagoshima city, and it is an active volcano that still continues to erupt. It is only 2 km. from Kagoshima!

Self introduction There are two rocket launching sites in Kagoshima, and it's the closest location to space.

A video of Noguchi-san, and an illustration movie on figure skating will be attached.

Self introduction There are two rocket launching sites in Kagoshima, and it's the closest location to

space.

Tanegashima rocket launching site

Uchinoura rocket launching site

A typical artificial satellite launched from Uchinoura

In space where there is no force of gravity, even actions like changing one's posture, or trying to face a desired direction are difficult to perform.

To change orientation in space either a small rocket (Thruster) is used, or the rotation of a top is put to use. Control in space where there is no gravitational force

However, because a large amount of movement takes place, there are times when making slight movements are difficult. Thus, the principle of a very fast rotating top is used.

As the top rotates, it stands upright at a small point, and rotates in a stable manner. This is called the gyro effect.

For example, in the case of Japan's asteroid probe Hayabusa

Furthermore, in the case of IKAROS, rotation was used for controlling the orientation and for drawing out a wide sail.

Rotation of figure skates

Rotation of figure skates

Which top do you think will rotate well?

Let's try out different cases such as size, weight, etc.

A big and heavy top and a small and light top

Which top will rotate for a longer time?

Make one circle of 6cm radius with a compass Make four small circles of3cm radius with a compass

Tops with the same weight but different sizes

Let's make and try spinning these

Make two tops having the same size and the same weight

Which one is the "Asada top" that rotates by closing in the arms?

Gyro effect used in space

There are several examples of this around us too!

Let's all look for them together!

Slide 1	Good morning everyone! My name is Shoichiro Arimizu. I am an elementary school teacher in Japan!
Slide 2	I have come from Japan so that today we all can have some fun making spinning tops and playing with them!
Slide 3	This is what Japan looks like. It is a beautiful country surrounded by sea, which separates it from other countries. I live in the Kagoshima prefecture, which is right here.
Slide 4	If you take a closer look, this is what it looks like. Don't you think it has a very interesting shape? Kagoshima consists of two large peninsulas and around 600 large and small islands. The islands stretch over a span of 600 km from North to South.
Slide 5	This is the shrine from where Kagoshima got its name. It's called "Kagoshima-Jingu." It pays homage to the Gods who created Japan. There are several such buildings still seen in Kagoshima that give a feel of Japan.

Slide 6	World's natural heritage, and Sakurajima,
	which is a magnificent volcano, are located in
	Kagoshima. Also, the Amami islands called
	the Eastern Galapagos are also located here.
	Nature is bountiful here. These are just a few
	of the many photographs of the island
	(I will add more photographs)
Slide 7	Now, I will introduce to you Izumi, the city
	where I live.
	Izumi is located in the North part of the
	Kagoshima prefecture.
	It is situated at the border between
	prefectures, therefore, several historical
	buildings can still be seen here.
Slide 8	These are cranes.
	Of the cranes immigrating to Japan, the
	largest number of them can be seen in Izumi.
	This year more than 12,000 birds have flown
	in from faraway places like China and Siberia.
	At the end of February, these birds will fly
	back to China and Siberia.

Slide 9	This is the elementary school where I teach. It is a very old elementary school founded 129 years ago. Don't you think the children are so cute!
Slide 10	Let's go back to Kagoshima! While Kagoshima is bountiful, it is very close to space. This is because there are two launching sites here.
Slide 11	This is Tanegashima's space base. The launching site is surrounded by the sea, and it is said to be the most beautiful launching site in the world.
Slide 12	And this is the launching site in Uchinoura. This launching site can launch small to mid size rockets. The rocket shown in the picture here is the M-V.
Slide 13	The historical artificial satellite "Hayabusa" was launched from here. As you may be aware, Hayabusa is an artificial satellite that brought back stellar fragments from the asteroids. Now, let's proceed to the main subject.
Slide 14	In space where there is no force of gravity, maintaining or changing one's posture is extremely difficult.

	In order to maintain one's posture or change the direction, a small rocket called a Thruster, and the rotation of spinning tops is used in satellites.
Slide 15	This is a famous Japanese robot character
	Many such small rockets are attached to its back. Frankly speaking, many small rockets have been attached unnecessarily, and I am not so sure from where the fuel is loaded
Slide 16	However, if the thrusters are used, there is a large amount of movement, and as a result, there are times when it is unsuitable such as when only a slight change in the direction is desired.
Slide 17	Thus, a very fast rotating top is used.
	When a top is rotated, it stands upright at a small point and rotates in a stable manner.
	This is called the "Gyro effect."
Slide 18	This is the gyro that was installed inside Hayabusa.
	This is how it rotates and changes the direction.
Slide 19	Next, see the case of IKAROS. When the posture of several artificial satellites is to be controlled as shown in the photograph, the rotating force is used.

	This is exactly like in the case of figure
	skating.
	Speaking of figure skating
Slide 20	Did anyone notice anything?
	That's right! If the wings are spread, the
	rotation becomes slower.
	The same thing can be seen during the
	rotation of a figure skater.
Slide 21	It's the same in space as well. In an
	experiment performed by an astronaut, a
	triple axel, which cannot be seen on the
	ground, can be seen!
Slide 22	So let's check the differences in rotation by
	changing size and weight of actual tops!
Slide 23	Let me quickly tell you that this is just a toy!
	How one rotates it will also differ from person
	to person, and it is not necessarily the same
	for everyone.
	First of all, let's prepare and rotate a big and
	heavy top and a small and light top!
	Which top will rotate for a longer time?
	We saw that the big and heavy top rotated
	slowly for a longer time!
	However, what will happen if the weight is
	the same, but the size is different?
	How many think that the bigger one will
	rotate better?
Slide 24	Make one circle having a 12cm diameter and 4
	small circles having a 6cm diameter.
	This will enable you to make circles having
	the same weight.
	In order to understand the difference in
	rotation, please try it out for yourself!

Slide 25	Which one will rotate slower?
	And which one will rotate longer?
	Congratulations to those who guessed this
	right!
	On the ground, the same thing can be seen in
	the case of figure skating.
	The same thing occurs in space as well. The
	rotation varies simply by spreading out or
	closing in ones arms.
Slide 26	Alright then, here is a quiz!
	If the size is kept the same, but the
	distribution of weight is varied, what kind of
	difference would be seen?
	Which top will rotate easily?
	Also, which top will rotate slower and which
	will rotate longer?
Slide 27	As I said in the beginning, gyro is used in
	space. However, there are several examples of
	its use around us too!
Slide 28	We all must definitely look for those.
	For example, this toy can also be made.
	It can be made very easily, and if you throw it
	like you would throw a football, you can make
	it fly higher than I can!
Slide 29	