

EXPERIENCE THE WONDERS OF MIRRORS!

Building a Space Kaleidoscope

HATERUMA

Circumference: approx. 15km Population: approx. 550 people

SUGARCANE FIELDS

THE STARRY SKY AND THE LINE OF ORBIT ISS

© Naka Irie

THE STARRY SKY, OBSERVATION TOWER AND THE MILKY WAY

KINDERGARTENERS

WE WANT TO COME UP WITH KINDERGARTEN TEACHING MATERIALS BASED ON THE IMAGE OF THE STARRY SKY OF HATERUMA!

DIFFERENT TYPES OF MIRRORS

DIFFERENT TYPES OF MIRRORS

SPACE SUIT MIRROR

DIFFERENT TYPES OF MIRRORS

Corner cube mirror

We can precisely measure the distance from the earth to the moon!

Place a marble on paper

When a mirror is put behind the marble, it reflects and we can see 2 marbles

What happens when we change the angle to 120°?

We can now see 3 marbles!

What will happen if we change the angle to 90°, 60° or 30°? Let's experiment and find out!

When we change the angle...

We can see more marbles!

Angle	180°	120°	90°	60°	30°
Number of objects	1	1	1	1	1
Number in the mirror	1	2	3	5	11
Number of Items	2	3	4	6	12

Angle x Total = 360

What is this? => It's a window.

Windows also become mirrors!

BUILDING A KALEIDOSCOPE USING THE PROPERTIES OF MIRRORS

I TUBE-SHAPED KALEIDOSCOPE

II BOX-SHAPED KALEIDOSCOPE

(1) Roll out some black tape and place microscope slides on top.

(2) Connect the 3 slides.

(3) Wrap black tape around the sides.

*Leave a gap of about 1mm between the pieces of glass!

It's finished!

Let's take a look!

THINGS TO PREPARE:

☆CRAFT PAPER
☆SCISSORS
☆MIRRORS
☆DOUBLESIDED TAPE
☆PIPE CLEANER
☆BLACK TAPE

(2) Affix mirrors to the top and bottom squares with double-sided tape.

(3) Assemble a box, sticking it together with black tape.

(4) Push two beads (5) Dangle the straight wire down along a pipe cleaner. inside the box and take a look.

What did it look like?

PRACTICAL USES

THE PROPERTIES OF MIRRORS CAN BE USED TO MAKE DIFFERENT TYPES OF KALEIDOSCOPES!

LOOK INTO THESE MYSTERIOUS WORLDS!

THANK YOU FOR LISTENING!

Slide 1	Hello, everyone.
	My name is Kae Ichihashi and I have come from the Okinawa Prefecture
	in Japan.
	I currently work at Hateruma Kindergarten.
	I would now like to talk on the theme of "Experience the Wonders of
	Mirrors! Building a Space Kaleidoscope."
Slide 2	To begin, I would like to tell you about Hateruma, the island where I live.
	This is a world map. Now I get close to see this part.
Slide 3	Where exactly is Hateruma?
	The answer is here.
	Hateruma is Japan's southernmost inhabited island. It is located in a
	remote place just 220 km from Taiwan and approximately 2,000 km away
	from Tokyo.
Slide 4	Hateruma is a peaceful island surrounded by a beautiful coral reef. The
	island has a circumference of about 15km and has a population of
	approximately 550 people. Okinawa has a custom of eating goats, and
	there are many goats raised on Hateruma.
Slide 5	The key industry is agriculture, and the cultivation of sugarcane is
	prosperous.
Slide 6	There is a traditional culture on this island. This is a picture of the lion
	dance. This event is held in the biggest festival called "MUSHAMA".
	When children are bitten by this lion, they will grow up strong and
	healthy.
Slide 7	Since there is little artificial light, stars cover the entire sky on nights
	when there is no moonlight.
	The sky above Hateruma is hardly affected by jet streams, and there is
	little flickering of the stars, so it is a near-perfect environment for
	astronomical observation.
Slide 8	Of the 88 constellations, 84 can be observed throughout the year, with the
	Southern Cross visible from December to June and the Milky Way visible
	year-round.
	In recent years, Hateruma has been called "the island that is closest to
	space," and it has attracted tourists not only from Japan but also from
	other countries.
Slide 9	The children of Hateruma Kindergarten are growing up with great energy
	in this wonderful environment. This photo was taken on a trip to a nearby
	beach. This year, there are 15 kindergarteners. Some of the children want
	to become pilots or work on space stations in the future.

Slide 10	When deciding on the theme of this presentation, I felt that I wanted to
	come up with kindergarten teaching materials based on the image of the
	starry sky of Hateruma.
	That's what led me to think of building a kaleidoscope.
	In order to build a kaleidoscope, we first need to learn about mirrors. That
	is the keyword of this presentation.
	I would now like us to experience together the wonders of mirrors.
Slide 11	In everyday life, we use various types of mirrors.
	For example, mirrors on the roads, in bathrooms, and in cars
	But how about this mirror? Where is it?
Slide 12	That's right.
	This is a mirror attached to a space suit.
	Space suits feature switches for temperature control and other functions,
	but since it is impossible for an astronaut to move his or her head to see
	parts of the space suit, these switches are operated by looking into this
	mirror. Now, what is this?
Slide 13	This is a moon reflector, which uses something called a corner cube mirror
	that is constructed with three mirrors placed at right-angles. It was
	carried to the moon by the Apollo spacecraft. Laser beams are reflected
	onto this in order to measure the distance to earth. This mirror has made
	it possible to measure the distance between earth and the moon in units
	of centimeters.
	So mirrors are even being used in space.
Slide 14	But what are the properties of mirrors?
	Let's carry out an experiment using mirrors.
	Please get this paper ready.
	Place a marble on top of the paper.
	Then, when you place a mirror behind the marble, it will reflect and you
	will be able to see two marbles. Has everyone been able to see this?
Slide 15	OK, next, let's try applying angles using two mirrors.
	Please try placing the two mirrors along the line showing 120 degrees.
	What can you see?
	That's right. There are now three marbles visible.
	Now how about if we change the angle to 90, 60 or 30 degrees? Let's try
	this out as an experiment.
Slide 16	When we change the angle, this is the result.
	Let's record on paper the number of items appearing in the mirror.
	You should be able to notice a common rule.

Slide 17	The results of the experiment look like this.
	Did everyone notice the rule?
	The angle when multiplied by the number of marbles always equals 360.
	This is very interesting, isn't it?
Slide 18	Let's look at one other property of mirrors.
	What is this?
	Yes, it's a window.
	However, the scenery in front of the window is reflected in this glass part.
	That's right: it's the same as a mirror.
	Windows also become mirrors when the inside is dark and outside is light.
	Using this mirror-like property, let's try building an actual kaleidoscope.
Slide 19	Today, I would like us all to build together two types of kaleidoscopes.
	The first is a tube-shaped kaleidoscope, and the second is a box-shaped
	kaleidoscope.
Slide 20	Let's get straight into building our tube-type kaleidoscope.
	Please get ready the three microscope slides, black vinyl tape and
	scissors.
	Roll out the black tape, then arrange and affix three microscope slides on
	top of the tape.
	Please leave a gap of about 1mm between the pieces of glass.
	Now cut the tape and make a triangle shape with the glass.
	Next, wrap the sides with tape. It's okay if there is a little bit of glass
	showing at the top or bottom.
Slide 21	This is now finished.
	Please take a look inside.
	How does it look? If you place a shiny sheet of paper or a similar item at
	the end of the tube, it should look very pretty.
	OK, let's move on to our next production.
Slide 22	Next, let's try building a box-shaped kaleidoscope.
	In the experiment we just did with the marbles, we saw that number of
	marbles increased as the angle of the two mirrors became smaller.
	When the angle is placed substantially close to zero – in other words,
	when the mirrors are facing each other in parallel – you will be able to see
	an infinitely continuing corridor like this.
	The box-shaped kaleidoscope produces this state inside a box.
	Please get ready the materials and tools that we are going to need.
Slide 23	First, please cut out the craft paper along the lines.

Slide 24	Next, affix mirrors to the top and bottom squares with double-sided ta				
	Assemble a box, sticking it together with black tape.				
	The box is now finished.				
Slide 25	Push two beads along the pipe cleaner.				
	Dangle the pipe clearner down inside the box and take a look.				
	How does it look? Can you see what looks like an endlessly continuing				
	corridor?				
Slide 26	Like this, the properties of mirrors can be used to make different types of				
	kaleidoscopes.				
	As an example of practical use, I have brought along today a box-shaped				
	kaleidoscope that uses six mirrors.				
	Please have a look through it.				
Slide 27	Inside, it looks like this.				
	Don't you think it looks like space?				
	As souvenirs, I will give out space kaleidoscope building kits to the				
	teachers in attendance today, so please try building them at home.				
	Please follow the instructions that are provided inside the kits.				
	Finally, I am happy to take any questions. Is there anything you would				
	like to ask?				
Slide 28	This brings my presentation to an end.				
	Thank you for listening carefully.				
Extra	To close, I will play the Okinawan instrument known as the "sanshin."				
	Please listen!				